A flower.  In the shade.

Macro Photography

Photos by Jason Glass

Words by Wikipedia
Some chewed gum.  I think.

Macro photography (or photomacrography or macrography, and sometimes macrophotography) is extreme close-up photography, usually of very small subjects, in which the size of the subject in the photograph is greater than life size (though macrophotography technically refers to the art of making very large photographs). By some definitions, a macro photograph is one in which the size of the subject on the negative or image sensor is life size or greater. However in other uses it refers to a finished photograph of a subject at greater than life size.
The ratio of the subject size on the film plane (or sensor plane) to the actual subject size is known as the reproduction ratio. Likewise, a macro lens is classically a lens capable of reproduction ratios greater than 1:1, although it often refers to any lens with a large reproduction ratio, despite rarely exceeding 1:1.

A bee.  On a flower.

Outside of technical photography and film-based processes, where the size of the image on the negative or image sensor is the subject of discussion, the finished print or on-screen image more commonly lends a photograph its macro status. For example, when producing a 6*4 inch (15*10 cm) print using 135 format film or sensor, a life-size result is possible with a lens having only a 1:4 reproduction ratio.
Reproduction ratios much greater than 1:1 are considered to be photomicrography, often achieved with digital microscope (photomicrography should not be confused with microphotography, the art of making very small photographs, such as for microforms). Due to advances in sensor technology, today's small-sensor digital cameras can rival the macro capabilities of a DSLR with a "true" macro lens, despite having a lower reproduction ratio, making macro photography more widely accessible at a lower cost. In the digital age, a "true" macro photograph can be more practically defined as a photograph with a vertical subject height of 24 mm or less.

Some debris

"Macro" lenses specifically designed for close-up work, with a long barrel for close focusing and optimized for high reproduction ratios, are one of the most common tools for macro photography. (Unlike most other lens makers, Nikon designates its macro lenses as "Micro" because of their original use in making microform.) Most modern macro lenses can focus continuously to infinity as well and can provide excellent optical quality for normal photography. True macro lenses, such as the Canon MP-E 65 mm f/2.8 or Minolta AF 3x-1x 1.7-2.8 Macro, can achieve higher magnification than life size, enabling photography of the structure of small insect eyes, snowflakes, and other minuscule objects. Others, such as the Infinity Photo-Optical's TS-160 can achieve magnifications from 0-18x on sensor, focusing from infinity down to 18 mm from the object. Macro lenses of different focal lengths find different uses: Continuously-variable focal length - suitable for virtually all macro subjects:

  • 45-65 mm - product photography, small objects that can be approached closely without causing undesirable influence, and scenes requiring natural background perspective
  • 90-105 mm - insects, flowers, and small objects from a comfortable distance
  • 150-200 mm - insects and other small animals where additional working distance is required
Extending the distance between the lens and the film or sensor, by inserting either extension tubes or a continuously adjustable bellows, is another equipment option for macro photography. The further the lens is from the film or sensor, the closer the focusing distance, the greater the magnification, and the darker the image given the same aperture. Tubes of various lengths can be stacked, decreasing lens-to-subject distance and increasing magnification. Bellows or tubes eliminate infinity focus. They can be used in conjunction with some other techniques such as reversing the lens.

A toy, broken in the cracks of some concrete.

Increasingly, macro photography is accomplished using compact digital cameras and small-sensor bridge cameras, combined with a high powered zoom lens and (optionally) a close-up diopter lens added to the front of the camera lens. The deep depth of field of these cameras is an advantage for macro work. The high pixel density and resolving power of these cameras' sensors enable them to capture very high levels of detail at a lower reproduction ratio than is needed for film or larger DSLR sensors (often at the cost of greater image noise). Despite the fact that many of these cameras come with a "macro mode" which does not qualify as true macro, some photographers are using the advantages of small sensor cameras to create macro images that rival or even surpass those from DSLRs.